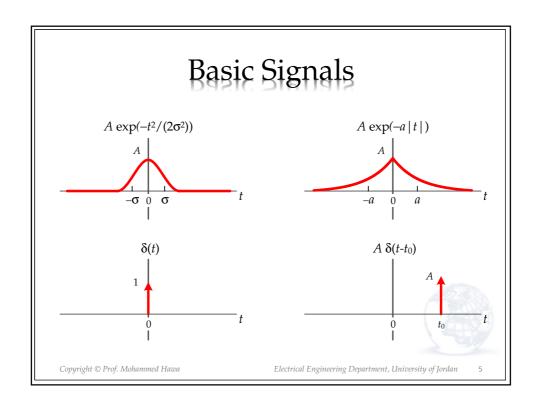
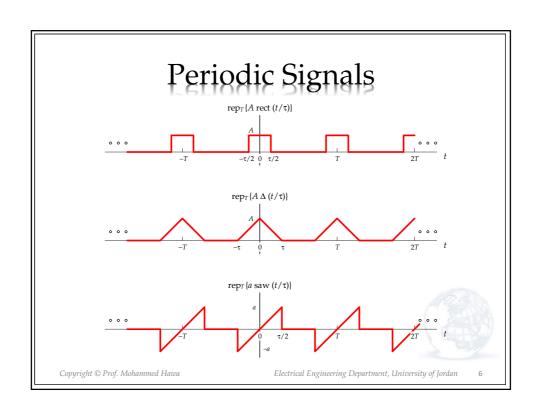
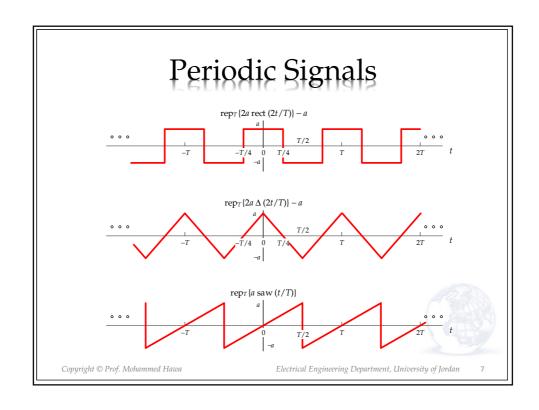
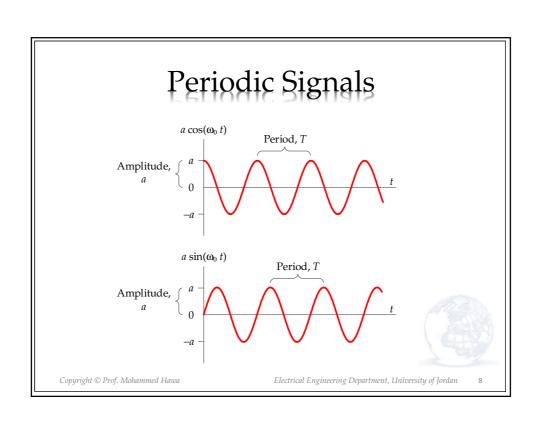

Lecture 2: Review of Signal Analysis


Prof. Mohammed Hawa Electrical Engineering Department The University of Jordan


EE421: Communications I

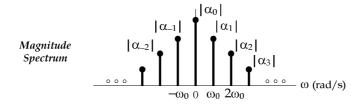


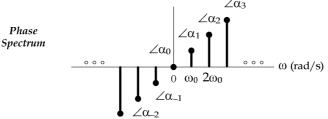


Exponential/Trigonometric/Compact

$$x(t) = \sum_{n=-\infty}^{\infty} \alpha_n \cdot e^{jn\omega_0 t}, \quad \omega_0 = \frac{2\pi}{T}$$

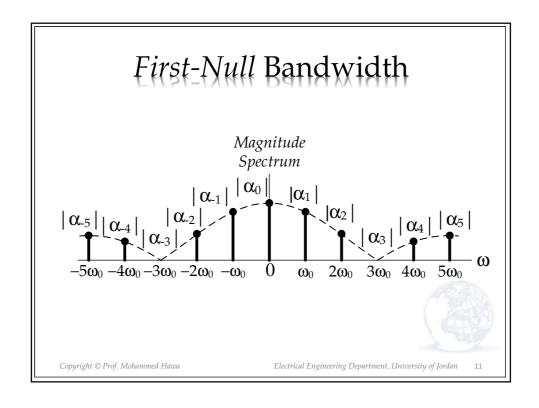
$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(n\omega_0 t\right) + b_n \sin\left(n\omega_0 t\right) \right), \quad \omega_0 = \frac{2\pi}{T}$$

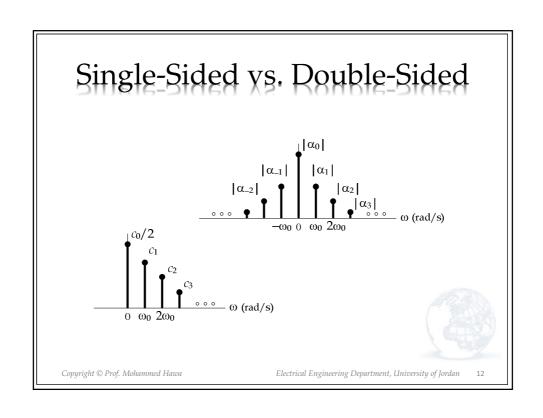

$$x(t) = \frac{c_0}{2} + \sum_{n=1}^{\infty} c_n \cos(n\omega_0 t - \theta_n), \quad \omega_0 = \frac{2\pi}{T}$$


Copyright © Prof. Mohammed Hawa

Electrical Engineering Department, University of Jordan

(


Exponential Fourier Series

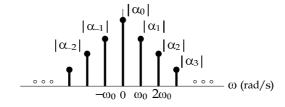


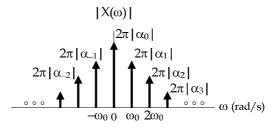
Copyright © Prof. Mohammed Hawa

Electrical Engineering Department, University of Jordan

Fourier Transform

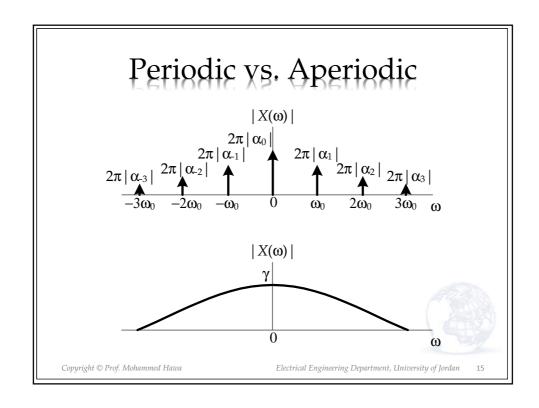
$$\mathbf{X}(\omega) = \mathscr{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$


$$x(t) = \mathscr{F}^{-1}\{\mathbf{X}(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{X}(\omega) e^{j\omega t} d\omega$$


Copyright © Prof. Mohammed Hawa

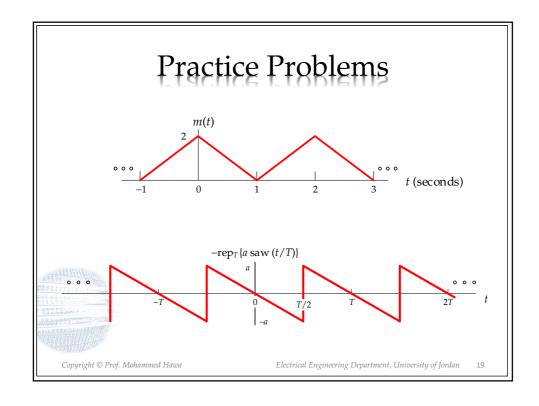
Electrical Engineering Department, University of Jordan

13


Fourier Series vs. Tranform

Copyright © Prof. Mohammed Hawa

Electrical Engineering Department, University of Jordan


x(t)	$X(\omega) = \mathscr{F}\{x(t)\}\$	
$a\cos(\omega_0 t)$	$\pi a \delta \left(\omega - \omega_o\right) + \pi a \delta \left(\omega + \omega_o\right)$	
$a\sin(\omega_0 t)$	$-j\pi a\delta\left(\omega-\omega_{o}\right)+j\pi a\delta\left(\omega+\omega_{o}\right)$	
$e^{\pm j\omega_0 t}$	$2\pi\delta(\omega \mp \omega_0)$	
$\operatorname{rect}\left(t\right)$	$\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$	
$\operatorname{rect}\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\omega \tau}{2\pi}\right)$	
$\Delta\left(t\right)$	$\operatorname{sinc}^2\left(\frac{\omega}{2\pi}\right)$	
$\Delta\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}^2\left(\frac{\omega\tau}{2\pi}\right)$	
$\operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}$	$\operatorname{rect}\left(\frac{\omega}{2\pi}\right)$	
$\operatorname{sinc}\left(\frac{t}{2\pi}\right)$	$2\pi \operatorname{rect}(\omega)$	
$\operatorname{saw}\left(\frac{t}{\tau}\right)$	$\frac{-2j}{\omega} \left[\operatorname{sinc} \left(\frac{\omega \tau}{2\pi} \right) - \cos \left(\frac{\omega \tau}{2} \right) \right]$	
$\delta(t)$, Dirac delta function	1	
1	$2\pi\delta(\omega)$	
$\operatorname{rep}_T\{p(t)\}, \operatorname{periodic}$	$\sum_{n=-\infty}^{\infty} 2\pi \alpha_n \delta \left(\omega - n\omega_o\right)$	
$\operatorname{rep}_{T} \{ \delta(t) \} = \sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\sum_{n=-\infty}^{\infty} \frac{2\pi}{T} \delta \left(\omega - n\omega_o \right) = \omega_0 \operatorname{rep}_{\omega_0} \left\{ \delta(\omega) \right\}$	
$\operatorname{rep}_T\left\{A \operatorname{rect}\left(\frac{t}{\tau}\right)\right\}$	$\sum_{n=-\infty}^{\infty} 2\pi \frac{A\tau}{T} \operatorname{sinc}\left(\frac{n\omega_o\tau}{2\pi}\right) \delta\left(\omega - n\omega_o\right)$	
$\operatorname{rep}_T\left\{A\ \Delta\left(\frac{t}{\tau}\right)\right\}$	$\sum_{n=-\infty}^{\infty} 2\pi \frac{A\tau}{T} \operatorname{sinc}^{2}\left(\frac{n\omega_{o}\tau}{2\pi}\right) \delta\left(\omega - n\omega_{o}\right)$	
$\operatorname{rep}_T\left\{a \text{ saw }\left(\frac{t}{T}\right)\right\}$	$\sum_{n=-\infty}^{\infty} \frac{2\pi d_n \sigma(\omega - n\omega_o)}{T} \delta(\omega - n\omega_o) = \omega_0 \operatorname{rep}_{\omega_0} \left\{ \delta(\omega) \right\}$ $\sum_{n=-\infty}^{\infty} \frac{2\pi}{T} \delta(\omega - n\omega_o) = \omega_0 \operatorname{rep}_{\omega_0} \left\{ \delta(\omega) \right\}$ $\sum_{n=-\infty}^{\infty} 2\pi \frac{A\tau}{T} \operatorname{sinc} \left(\frac{n\omega_o \tau}{2\pi} \right) \delta(\omega - n\omega_o)$ $\sum_{n=-\infty}^{\infty} 2\pi \frac{A\tau}{T} \operatorname{sinc}^2 \left(\frac{n\omega_o \tau}{2\pi} \right) \delta(\omega - n\omega_o)$ $\sum_{n=-\infty}^{\infty} \frac{2\pi d_n \sigma(\omega)}{2\pi a} \delta(\omega - n\omega_o)$	
u(t), unit step function	$NO(\omega) + \frac{1}{i\omega}$	
sgn(t) = u(t) - u(-t)	$\frac{2}{j\omega}$	
$e^{-t^2/(2\sigma^2)}$	$\frac{\frac{2}{j\omega}}{\sigma\sqrt{2\pi}} \frac{1}{e^{-\sigma^2\omega^2/2}}$	
$e^{-a t }, a > 0$	$\frac{2a}{a^2+\omega^2}$	
Copyright © Dr. Mohammed Hawa	Electrical Engineering Department, University of Jordan 1	

Fourier Transform Properties

Property	x(t)	$X(\omega) = \mathscr{F}\left\{x(t)\right\}$
Linearity (superposition)	ax(t) + by(t)	$aX(\omega) + bY(\omega)$
Complex conjugate	$x^*(t)$	$X^*(-\omega)$
Symmetry	$x_{even}(t)$	$X_{even}(\omega)$, real
	$x_{odd}(t)$	$X_{odd}(\omega)$, imaginary
Duality	X(t)	$2\pi x(-\omega)$
Time scaling (reciprocal spreading)	$x\left(\frac{t}{\tau}\right)$	$ \tau \ X(\tau\omega)$
Time inversion (time reversal)	x(-t)	$X(-\omega)$
Time shift (time delay/advance)	$x(t \pm t_0)$	$X(\omega)e^{\pm j\omega t_0}$
Frequency shift	$x(t)e^{\pm j\omega_0 t}$	$X\left(\omega\mp\omega_{0}\right)$
Modulation	$x(t)\cos(\omega_0 t) = \frac{x(t)}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right)$	$\frac{1}{2}X\left(\omega-\omega_0\right) + \frac{1}{2}X\left(\omega+\omega_0\right)$
Time differentiation	$\frac{d^n}{dt^n}x(t)$	$(j\omega)^n X(\omega)$
Time integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{X(\omega)}{j\omega} + \pi X(0) \delta(\omega)$
Time convolution	$x(t) \circledast y(t)$	$X(\omega)Y(\omega)$
Frequency convolution	x(t)y(t)	$\frac{1}{2\pi}\left(X(\omega)\circledast Y(\omega)\right)$

Copyright © Prof. Mohammed Hawa

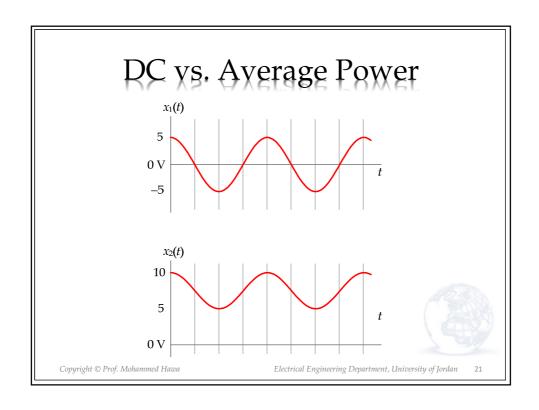
Electrical Engineering Department, University of Jordan

DC vs. Average Power

The DC value or average value of the signal x(t) is:

$$DC = \overline{x(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) dt$$

$$DC=\overline{x(t)}=\alpha_0$$


The average power in the signal x(t) is:

$$P_x = \overline{x^2(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt$$

$$P_{x} = \overline{x^{2}(t)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{x}(\omega) d\omega$$

Copyright © Prof. Mohammed Hawa

 ${\it Electrical\ Engineering\ Department,\ University\ of\ Jordan}$

Orthogonality

 $4\cos(100t) + 2\cos(300t)$

 $5\cos(100t) + 3\cos(600t - 30^\circ)$

 $5\cos(100t) + 7\sin(400t)$

 $2\cos(100t) + 3\cos(100t - 40^{\circ})$

 $2\cos(100t) + 3\sin(100t)$

Copyright © Prof. Mohammed Hawa

 ${\it Electrical\ Engineering\ Department,\ University\ of\ Jordan}$

Orthogonality

 $2\cos(100t) + 3\cos(100t)$

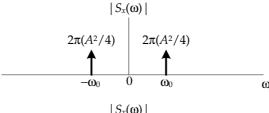
 $4\cos(100t) + 7$

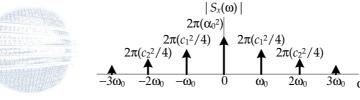
 $3\cos(100t) + 2\cos(400t) + 6$

 $\operatorname{rep}_T\{2A \operatorname{rect}(2t/T)\} - A/2$

 $rep_T{2A rect(2t/T)} - A$

Copyright © Prof. Mohammed Hawa


Electrical Engineering Department, University of Jordan


23

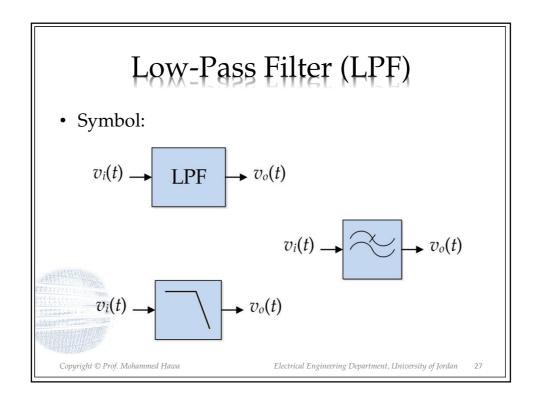
DC from Frequency Domain $\begin{vmatrix} X(\omega) \\ 2\pi | \alpha_3| & 2\pi | \alpha_2| \\ -3\omega_0 & -2\omega_0 & -\omega_0 \end{vmatrix}$ $\begin{vmatrix} X(\omega) \\ 2\pi | \alpha_1| & 2\pi | \alpha_2| \\ 2\pi | \alpha_1| & 2\pi | \alpha_2| & 2\pi | \alpha_3| \\ 0 & \omega_0 \end{vmatrix}$ $\begin{vmatrix} X(\omega) \\ y \\ 0 \end{vmatrix}$ Copyright © Prof. Mohammed Hawa Electrical Engineering Department, University of Jordan 24

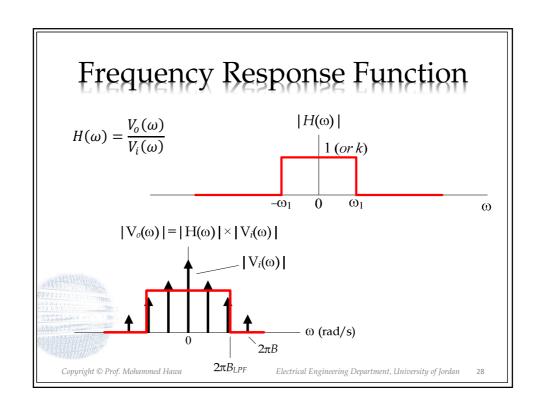
Power Spectral Density

$$PSD = S_{x}(\omega) = \lim_{T \to \infty} \frac{1}{T} |X_{T}(\omega)|^{2} = \mathcal{F}\{R_{xx}(\tau)\}\$$

Copyright © Prof. Mohammed Hawa

Electrical Engineering Department, University of Jordan


25


Quick Review of Filters

- There are four main filter types that you studied in signal analysis:
 - -LPF: Low-Pass Filter
 - -BPF: Band-Pass Filter
 - -HPF: High-Pass Filter
 - −BSF: Band-Stop Filter / Notch Filter.

Copyright © Prof. Mohammed Hawa

 ${\it Electrical\ Engineering\ Department,\ University\ of\ Jordan}$

Characteristics/Specifications

- Always centered at 0 rad/s.
- Bandwidth =
 Cutoff frequency =
 Corner frequency =
 -3 dB frequency = ω_1 rad/s $v_i(t) \rightarrow$
- Gain = k.

w/ Bandwidth = 5 kHz & Gain = 2

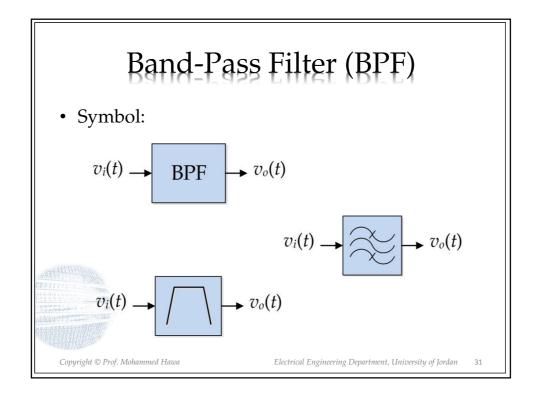
Copyright © Prof. Mohammed Hawa

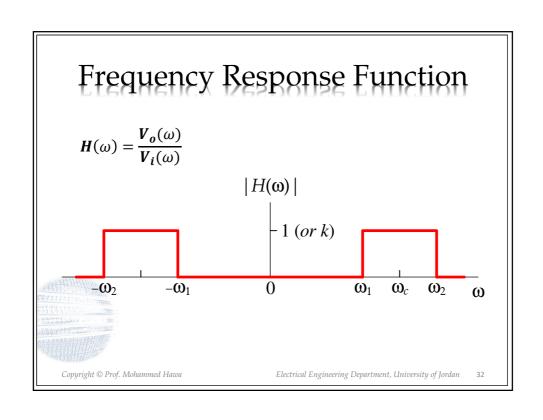
Electrical Engineering Department, University of Jordan

29

Example Circuit

$$+ \circ - \stackrel{R}{\swarrow} + v_{o}(t)$$


$$v_{o}(t)$$


$$B_{LPF} = \frac{1}{2\pi RC} \, \mathrm{Hz}$$

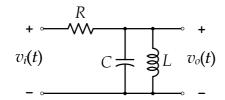
Gain = 1

Copyright © Prof. Mohammed Hawa

Electrical Engineering Department, University of Jordan

Characteristics/Specifications

- Centered around center frequency ω_c rad/s.
- Bandwidth of filter = ω_2 ω_1 rad/s
- Gain = k.


w/Bandwidth = 80 kHz Center Frequency = 100 MHz & Gain = 1

Copyright © Prof. Mohammed Hawa

Electrical Engineering Department, University of Jordan

33

Example Circuit

$$f_c = f_{res} = \frac{1}{2\pi\sqrt{LC}}$$
 Hz

$$B_{BPF} = \Delta f = \frac{R}{2\pi L} \, \text{Hz}$$

Gain = 1

Copyright © Prof. Mohammed Hawa

Electrical Engineering Department, University of Jordan